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While it is widely acknowledged that forest biodiversity contributes to

climate change mitigation through improved carbon sequestration, con-

versely how climate affects tree species diversity–forest productivity

relationships is still poorly understood. We combined the results of long-

term experiments where forest mixtures and corresponding monocultures

were compared on the same site to estimate the yield of mixed-species

stands at a global scale, and its response to climatic factors. We found posi-

tive mixture effects on productivity using a meta-analysis of 126 case studies

established at 60 sites spread across five continents. Overall, the productivity

of mixed-species forests was 15% greater than the average of their

component monocultures, and not statistically lower than the productivity

of the best component monoculture. Productivity gains in mixed-species

stands were not affected by tree age or stand species composition but signifi-

cantly increased with local precipitation. The results should guide better use

of tree species combinations in managed forests and suggest that increased

drought severity under climate change might reduce the atmospheric

carbon sequestration capacity of natural forests.
1. Introduction
It is widely acknowledged that forest biodiversity contributes to many ecosys-

tem services, from the provision of material and energy [1] to the regulation of

abiotic and biotic disturbances [2]. In particular, several recent studies have

reported a positive effect of tree species diversity on forest productivity at the

global scale [3,4]. However, there is increasing evidence that tree species

diversity–ecosystem functioning relationships are dependent on environmental

conditions. Specifically, climatic conditions can change biodiversity–productivity

relationships (BPRs), as shown by reports of their large variation across forest

biomes in Europe [5,6] and globally [4].

In forest ecosystems, studies focusing on the comparison between two-

species mixtures with their respective monocultures showed a positive BPR

when tree species interactions improved the mobilization of the limiting

resource, such as water [7]. In addition, studies using large-scale datasets

found that BPRs were more likely to be stronger under colder or drier environ-

ments [4,8–11], suggesting that the productivity of mixed-species forests can be

affected by climatic conditions. However, it is still difficult to discern clear

response patterns of BPRs to climatic gradients [12], especially as the size of

climatic effects on BPR was small, not significant, or varied between regions
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Figure 1. Location of the study sites according to global variation in precipitation. Precipitation corresponds to the sum of precipitation in the second winter month,
the best correlated variable with PCA2 coordinates used as moderator in the meta-analyses.

Table 1. Summary of meta-analytical model values for the effects of
temperature, precipitation and mixture type on overyielding (OY) in old
forests. Parameter estimates (b) in italics show significant effects.

models parameters b [2CI; 1CI]

OYi � precipitation intercept 0.13 [0.05; 0.21]

precipitation 0.16 [0.05; 0.27]

OYi � mixture

type þ precipitation

intercept 0.1 [0.01; 0.19]

mixture type: EE 0.08 [20.07; 0.23]

precipitation 0.18 [0.07; 0.28]

OYi � N-fixing þ
precipitation

intercept 0.08 [20.02; 0.19]

precipitation 0.12 [20.01; 0.26]

N-fixing: present 0.11 [20.1; 0.33]

OYi � temperature þ
precipitation

intercept 0.12 [0.05; 0.20]

precipitation 0.14 [0.02; 0.26]
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and forest types [3,8,13–15]. One main reason for such

idiosyncratic effects is that large-scale BPR studies have

been mainly based on forest inventories [4,5,8,14] or

empirical studies [6,9] where the mixtures and monocultures

of a given species combination have not been sampled at the

same site, leading to potential confounding factors, such as

mixed forest growing in better local climatic conditions [13].

Owing to these uncertainties, it remains difficult to predict

how climate change will interact with tree species diversity

to influence productivity in forests.

To circumvent this drawback, we used a meta-analytical

approach to combine the results of long-term growth and

yield experiments where forest mixtures and corresponding

monocultures were compared at the same time on the

same site. We calculated the mixing effect at the stand

level using overyielding (OY) and transgressive overyielding

(TOY) estimates for each mixture and tested whether this

mixing effect changed along global gradients of temperature

and precipitation.

temperature 0.05 [20.05; 0.14]
2. Material and methods
We surveyed all studies published up to 2016 on the effect of tree

species diversity on forest productivity at the stand level using

the Web of Science, Agritrop and CAB Abstracts with the combi-

nations of the following terms: ‘mixed or mixing or mixture or

intercropping or diversity’ and ‘monoculture or pure or single

species’ and ‘productivity or production or yield or performance

or growth’ and ‘tree or forest’. We also looked at the references

cited in the articles we retrieved.

We retained studies where: (i) all component tree species of

mixed-species stands (e.g. A þ B) were grown as monocultures

(e.g. A and B) of the same age and in the same pedoclimatic con-

ditions and were measured in the same year; (ii) the mean,

variance and sample size (if .3) were reported for response vari-

ables in the text or available from tables or figures; (iii) a precise

geographical site location was provided allowing the retrieval of

local climatic conditions. We used stand biomass, volume or

basal area as response variables to estimate productivity. We dis-

carded studies focusing only on height as height growth is

mostly driven by site index and thus cannot accurately reflect

BPRs. When stand productivity was reported for several years

in the same study, we only used data from the last measurement.
This resulted in the selection of 30 publications, published

from 1997 to 2016, which accounted for 126 case studies, i.e.

individual comparisons of mixed stands with monocultures

of component species (electronic supplementary material,

table S1 and references in appendix S1), in 60 sites across five

continents (figure 1).

For the meta-analyses, we calculated two effect sizes as the log-

ratios between productivity of mixtures and mean productivity of

component species monocultures (overyielding or underyielding,

OY) or productivity of the most productive component species

(i.e. transgressive overyielding or underyielding, TOY) [16].

We tested the effect of five covariates (hereafter termed

‘moderators’) on the magnitude of BPR: stand age, species com-

position, presence of N-fixing species, local temperature and

precipitation (see electronic supplementary material, appendix S2

for details on calculation). We used multi-level meta-analytic

models [17] to estimate heterogeneity from multiple sources

(detailed in electronic supplementary material, appendix S2),

and tested the effects of moderators in an information theory

framework (using Akaike information criterion for small

sample size, AICc). Publication bias was assessed with cumulat-

ive meta-analyses [18]. Meta-analyses were made with the

‘metafor’ package 1.9-8 version in R 3.2.3 [19].
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Figure 2. Effect of precipitation (coordinates on PCA2) and type of tree species mixture (D, deciduous; E, evergreen) on overyielding in old forests (older than half of
the rotation age). The diameter of a bubble is proportionate to the weight (inverse of variance) of the corresponding study in the meta-analyses.
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3. Results
Overall, mixed-species forests exhibited a significant over-

yielding (OY) regardless of stand age. The overyielding was

16% [2CI ¼ 1%; þCI ¼ 32%] in young forests and 15% [3%;

28%] in old forests (with percentage calculated from model

coefficient parameter estimates as 100 � (eOY 2 1)). There

was neither transgressive overyielding nor transgressive

underyielding as the grand mean estimate (TOY) was not sig-

nificantly different from zero, its confidence interval

bracketing the zero value (213% [232%; 5%] in young forests

and 24% [220%; 9%] in old forests).

Model comparisons for overyielding in young forests and

transgressive overyielding in both young and old forests ident-

ified the null model as the best one, indicating that none of the

tested moderators contributed to explaining heterogeneity

among effect sizes (electronic supplementary material, table S2).

In old forests, three models for overyielding were in the

range of 2 units ofDAICc from the best model and included pre-

cipitation, temperature and stand composition as moderators

(electronic supplementary material, table S2). However, coeffi-

cient parameter estimates for the effect of mixture type and

temperature were not different from zero (table 1). The best

model only retained precipitation as a significant moderator

(electronic supplementary material, table S2). The overyielding

in old forests increased (slope: 0.16+ [0.05; 0.27]) with higher

precipitation (figure 2), whereas temperature had no significant

effect on overyielding, nor did the interaction between precipi-

tation and temperature (electronic supplementary material,

table S2). The presence of nitrogen-fixing species never

explained the overyielding of old mixed forests (table 1).

These results were unlikely to be affected by a publication bias

(electronic supplementary material, figure S1 and appendix S2)
4. Discussion
Our meta-analysis confirmed that trees are generally more

productive when growing in mixed-species stands than in

the corresponding monocultures, but the most striking

result was that overyielding varied at the global scale and

increased with precipitation. The stress gradient hypothesis

(SGH) posits that facilitation processes replace competition

between species under increasing levels of stress [20], which
should result in more positive BPR in forest with more

limited water supply [5,21]. However, the SGH is more rel-

evant at the species level and stressful conditions are

difficult to define for all component tree species of forest mix-

tures [10]. In addition, many of the interactions in mixed

forests, especially light-related interactions, are more likely

to involve competitive reduction than facilitation [22,23]. As

water availability increases, competition for light or nutrients

may increase, so any interactions that improve light or nutri-

ent availability, uptake or use efficiency will become more

evident and the complementarity effect will increase [7,24].

Therefore, the increasing overyielding with precipitation

suggests that light- or nutrient-related mechanisms are

likely dependent on water-related interactions in mixed

forests.

There was no significant effect of temperature on over-

yielding in our models, suggesting that temperature was

not a growth-limiting factor, as opposed to light, water or

nutrients. Studies using forest inventory data revealed

higher diversity effects on productivity in mixed forests

growing under harsher temperature conditions [4,8,11],

which could be due to higher complementarity effects

under environmental stress. It might also account for temp-

erature being a key driver of tree functional diversity [11],

a process that was controlled in the silvicultural studies

included in our meta-analysis.

The inclusion of a nitrogen-fixing species in a mixture did

not significantly influence the mixing effect, as already

observed [3]. The absence of a nitrogen-fixing effect in that

large-scale review and the present one may indicate that mix-

tures containing nitrogen-fixing species were often located on

sites where nitrogen was not the main limiting factor. Alterna-

tively, the classification of nitrogen-fixing species may need to

be adapted to reflect the occurrence of positive nutritional

interactions with mycorrhizae present in mixed stands [25].

Taking into account a large bioclimatic gradient, we esti-

mated the overyielding of mixed-species forests at around

15%. This finding is consistent with earlier large-scale studies

showing a positive and moderate effect of mixing tree species

on tree growth in both Mediterranean [14] and temperate and

boreal forests [8,26]. A previous meta-analysis [3] found a

higher estimate of overyielding, with an increase of 24% in

productivity. However, as we only used published studies
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that provided information on sample size and variance, we

could model multi-level error structure and estimate the

confidence interval of mixing effect size more confidently.

Our figure of 15+12% thus provides a more conservative

estimate of overyielding in mixed forests.

We further demonstrated for the first time to our knowl-

edge that there was, on average, no transgressive

underyielding in mixed-species forests, which means that

mixed-species forests are not significantly less productive

than the best monoculture of the component species at the

same site. This outcome is of great interest as it implies

that carefully designed mixed-species stands could provide

a wide range of ecosystem services (e.g. [1]), with a lower

vulnerability to disturbances (e.g. [3]), without negatively

affecting wood production.
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